
Using Placeholders to Simplify
your Methods: Learning

Methods, Part 2

By Deborah Nelson
Duke University

Professor Susan Rodger

June 16, 2008

• We will now complete the world that you
started in part one of the tutorial entitled
"Methods." If you have not yet done Part One,
you must go through that tutorial first.

Loading the World

• For this tutorial, you can use your completed
version from part one of the Methods tutorial.
That world was entitled methodStart.a2w.

• NOTE: You cannot double-click the file to open
it; Windows will not know what to use, and
even if you select Alice from a list of programs,
the loading will fail.

Part 1: Parameters

• Now that the kangaroo and the turtle have raced,
let's make a method for the kangaroo to hop back
to the turtle and challenge him to a race again.

• Click on the kangaroo in the object tree, then
click create new method in the methods tab, and
name it challenge. Drag a Do in order into your
new method.

• Then find the kangaroo’s turn to face method and
drag it into the method editor. Then select turtle,
and the entire turtle.

• See the screenshot on the next slide for an
illustration.

• Add a loop where the kangaroo executes hop two
times. Then add code where he asks the turtle if he
wants to race again. Your code will end up like this:

Saving Alice Objects
•In Alice, you can save an individual object, along with
any new methods you have written for it. This allows you
to be able to use the same character in more than one
world without having to teach it new methods over and
over.
•To do this, you can right-click on any object in the object
tree and then choose save object.
•To import the character into a new world, just go to File,
then Import, and find the object where you saved it.

Why use parameters

• If we save the kangaroo object and then and put
it in a world where there is no turtle, what will
happen? Alice will crash because the method
kangaroo.challenge refers to a turtle that isn’t
there in the new world! A class-level method
should not have any references to other
characters or world-level methods.

• In other words, instead of referring to the turtle
in the first instruction of this method, we're going
to use a parameter. A parameter is a place holder.

An example scenario

• For example, in another world, you may want
your kangaroo to be able to challenge a turtle
or a bunny or a penguin. We could write three
different methods: one for the kangaroo to
challenge the turtle, another for the kangaroo
to challenge the bunny and a separate one for
the kangaroo to challenge the penguin. With a
parameter, we could do this very easily.

How to create a parameter

• In this case, a parameter is going to be a
placeholder for an object that the kangaroo
will challenge - such as a bunny, a penguin or a
turtle.

• Click on the create new parameter button in
the method editor, and name it obj. Select the
type object, and then click OK.

• See the screenshot on the next slide for an
illustration.

How to create a parameter (cont 1)

• Now, you can see that the obj parameter has
appeared beside the name of the method. I've
highlighted it with a red box. Drag obj into the
method to replace the word turtle.

How to call a method that has a parameter

• To test your code, drag kangaroo.challenge
into world.my first method underneath the
world.race method that is already there.

• When you drag kangaroo.challenge into the
method, once you release your mouse you will
have to select turtle, then the entire turtle as
the object. See the screenshots on the next
two slides for an illustration.

Dragging kangaroo.challenge into world.race

• Selecting the turtle as the parameter argument:

• Press the play button to test your world.

Testing kangaroo.challenge on another object

• To reinforce your understanding of parameters,

let's call the method on another object. Add the
tortoise (from the Animal folder) to your world by
clicking on the Add objects button.

• Drag kangaroo.challenge into your world.my first
method and select the tortoise as the parameter.

• See the screenshot on the next slide for an
illustration.

• Play your world. Now after the race, the
kangaroo challenges the turtle and then the
tortoise.

Testing kangaroo.challenge (cont 1)

• Depending on where you placed the tortoise in your
world, you may notice that having the kangaroo hop
twice toward him does not look very good. Once you
know how to use the built in function distance to you
can improve the appearance of this method. For now,
don't worry about it.

• Let's finish making the rest of our world. In world.my
first method, delete the second call to
kangaroo.challenge for the tortoise. If you want, you
can delete the entire tortoise from your world.

Part 2: Properties

• Finally, we want to write a method to make the
turtle go into his shell. Click on turtle in the object
tree. Click on the methods tab and create a new
method named hide (If you use the world given
to you as a starter world, hide will have already
been created, but there is no code in it).

• We are going to make all of the turtle's body
parts invisible at the same time, except for his
shell.

• To do this, first drag a Do together into the hide
method.

Creating the turtle.hide method

• Then, click on the + sign beside turtle in the
object tree. Click on the backRightLeg.

• In the details area, click on the properties tab.
Click on isShowing and drag it into the Do
together.

• Set the value to false. This will make the
backRightLeg invisible. Click on more… on that
line of code and set duration to 0.1.

• See the screenshot on the next slide for an
illustration.

Turtle.hide method (cont 1)

• Do the same thing for each of the body parts
by clicking on each of these in the object tree-
backLeftLeg, frontLeftLeg, frontRightLeg, tail
and head - and dragging the isShowing
property of each into the turtle.hide method.

• Your code should look like the screenshot on
the following slide.

The code for turtle.hide (cont 2)

Turtle.hide (cont 3)

• Now drag the turtle.hide method into your
world.my first method underneath
kangaroo.challenge.

• If you want, you can have the kangaroo say
something at the end.

• Here is my final code in world.my first method:

• Press play to watch your entire animation.

Recap

• If you want to write a method in which an
object interacts with another character, you
can either write a world-level method or write
a class-level method with parameters

• A class-level method with parameters is a
good choice if you want to be able to save
your object out so that it can perform your
new method in different worlds.

Recap continued

• Keep in mind that parameters are not only
used in class-level methods. For example, if
you have five characters in your world and you
want them to all flip together, you can write
one world level method with an object
parameter that flips. Then in a Do together,
call the method for each of the objects in your
world.

